
GlobAl
EdiTioN

Software Engineering
TENTH EdiTioN

ian Sommerville

Software engineering
tenth edition

Ian Sommerville

Boston Columbus Indianapolis New York San Francisco Hoboken

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Editor in Chief: Michael Hirsch
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Chelsea Bell
Assistant Acquisitions Editor, Global
 Edition: Murchana Borthakur
Associate Project Editor, Global
 Edition: Binita Roy
Managing Editor: Jeff Holcomb
Senior Production Project
 Manager: Marilyn Lloyd
Director of Marketing: Margaret Waples

Marketing Coordinator: Kathryn Ferranti
Senior Manufacturing Buyer: Carol Melville
Senior Manufacturing Controller, Production,
 Global Edition: Trudy Kimber
Text Designer: Susan Raymond
Cover Art Designer: Lumina Datamatics
Cover Image: © Andrey Bayda/Shutterstock
Interior Chapter Opener: © graficart.net/Alamy
Full-Service Project Management: Rashmi
 Tickyani, Aptara®, Inc.
Composition and Illustrations: Aptara®, Inc.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The rights of Ian Sommerville to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Software Engineering, 10th edition, ISBN
978-0-13-394303-0, by Ian Sommerville, published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
 transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without either the prior written permission of the publisher or a license permitting restricted copying in
the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street,
London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this
text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does
the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 1-292-09613-6
ISBN 13: 978-1-292-09613-1

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

Typeset in 9 New Aster LT Std by Aptara®, Inc.

Printed and bound by Courier Westford in the United States of America.

http://www.pearsonglobaleditions.com

Progress in software engineering over the last 50 years has been astonishing. Our
societies could not function without large professional software systems. National
utilities and infrastructure—energy, communications and transport—all rely on
complex and mostly reliable computer systems. Software has allowed us to explore
space and to create the World Wide Web—the most significant information system
in the history of mankind. Smartphones and tablets are ubiquitous and an entire ‘apps
industry’ developing software for these devices has emerged in the past few years.

Humanity is now facing a demanding set of challenges—climate change and
extreme weather, declining natural resources, an increasing world population to be fed
and housed, international terrorism, and the need to help elderly people lead satisfying
and fulfilled lives. We need new technologies to help us address these challenges and,
for sure, software will have a central role in these technologies. Software engineering
is, therefore, critically important for our future on this planet. We have to continue to
educate software engineers and develop the discipline so that we meet the demand for
more software and create the increasingly complex future systems that we need.

Of course, there are still problems with software projects. Systems are still some-
times delivered late and cost more than expected. We are creating increasingly com-
plex software systems of systems and we should not be surprised that we encounter
difficulties along the way. However, we should not let these problems conceal the
real successes in software engineering and the impressive software engineering
methods and technologies that have been developed.

This book, in different editions, has now been around for over 30 years and this edi-
tion is based around the essential principles that were established in the first edition:

1. I write about software engineering as it is practiced in industry, without taking
an evangelical position on particular approaches such as agile development or
formal methods. In reality, industry mixes techniques such as agile and plan-
based development and this is reflected in the book.

Preface

4    Preface

2. I write about what I know and understand. I have had many suggestions for
additional topics that might be covered in more detail such as open source
development, the use of the UML and mobile software engineering. But I don’t
really know enough about these areas. My own work has been in system depend-
ability and in systems engineering and this is reflected in my selection of
advanced topics for the book.

I believe that the key issues for modern software engineering are managing com-
plexity, integrating agility with other methods and ensuring that our systems are
secure and resilient. These issues have been the driver for the changes and additions
in this new edition of my book.

Changes from the 9th edition

In summary, the major updates and additions in this book from the 9th edition are:

•	 I	have	extensively	updated	the	chapter	on	agile	software	engineering,	with	new	
material on Scrum. I have updated other chapters as required to reflect the increas-
ing use of agile methods of software engineering.

•	 I	have	added	new	chapters	on	resilience	engineering,	systems	engineering,	and	
systems of systems.

•	 I	have	completely	reorganized	three	chapters	covering	reliability,	safety,	and	security.

•	 I	have	added	new	material	on	RESTful	services	to	the	chapter	covering	service-
oriented software engineering.

•	 I	have	revised	and	updated	the	chapter	on	configuration	management	with	new	
material on distributed version control systems.

•	 I	 have	moved	 chapters	 on	 aspect-oriented	 software	 engineering	 and	 process	
improvement from the print version of the book to the web site.

•	 New	supplementary	material	has	been	added	to	the	web	site,	including	a	set	of	
supporting videos. I have explained key topics on video and recommended related
YouTube videos.

The 4-part structure of the book, introduced in earlier editions, has been retained
but I have made significant changes in each part of the book.

1. In Part 1, Introduction to software engineering, I have completely rewritten
Chapter 3 (agile methods) and updated this to reflect the increasing use of Scrum.
A new case study on a digital learning environment has been added to Chapter 1
and is used in a number of chapters. Legacy systems are covered in more detail
in Chapter 9. Minor changes and updates have been made to all other chapters.

  Preface    5

2. Part 2, which covers dependable systems, has been revised and restructured.
Rather than an activity-oriented approach where information on safety, security
and	reliability	is	spread	over	several	chapters,	I	have	reorganized	this	so	that	
each topic has a chapter in its own right. This makes it easier to cover a single
topic, such as security, as part of a more general course. I have added a com-
pletely new chapter on resilience engineering which covers cybersecurity,
organizational	resilience,	and	resilient	systems	design.

3. In Part 3, I have added new chapters on systems engineering and systems of
systems and have extensively revised the material on service-oriented systems
engineering to reflect the increasing use of RESTful services. The chapter on
aspect-oriented software engineering has been deleted from the print version but
remains available as a web chapter.

4. In Part 4, I have updated the material on configuration management to reflect
the increasing use of distributed version control tools such as Git. The chapter
on process improvement has been deleted from the print version but remains
available as a web chapter.

An important change in the supplementary material for the book is the addition of
video recommendations in all chapters. I have made over 40 videos on a range of topics
that are available on my YouTube channel and linked from the book’s web pages. In cases
where I have not made videos, I have recommended YouTube videos that may be useful.

I explain the rationale behind the changes that I’ve made in this short video:
http://software-engineering-book/videos/10th-edition-changes

Readership

The book is primarily aimed at university and college students taking introductory
and advanced courses in software and systems engineering. I assume that readers
understand the basics of programming and fundamental data structures.

Software engineers in industry may find the book useful as general reading and to
update their knowledge on topics such as software reuse, architectural design,
dependability and security and systems engineering.

Using the book in software engineering courses

I have designed the book so that it can be used in three different types of software
engineering course:

1. General introductory courses in software engineering. The first part of the book
has been designed to support a 1-semester course in introductory software engi-
neering. There are 9 chapters that cover fundamental topics in software engineering.

http://software-engineering-book/videos/10th-edition-changes

If your course has a practical component, management chapters in Part 4 may be
substituted for some of these.

 2. Introductory or intermediate courses on specific software engineering topics.
You can create a range of more advanced courses using the chapters in parts
2–4. For example, I have taught a course in critical systems using the chapters in
Part 2 plus chapters on systems engineering and quality management. In a course
covering software-intensive systems engineering, I used chapters on systems
engineering, requirements engineering, systems of systems, distributed software
engineering, embedded software, project management and project planning.

 3. More advanced courses in specific software engineering topics. In this case, the
chapters in the book form a foundation for the course. These are then supple-
mented with further reading that explores the topic in more detail. For example,
a course on software reuse could be based around Chapters 15–18.

Instructors may access additional teaching support material from Pearson’s website.
Some of this is password-protected and instructors using the book for teaching can
obtain a password by registering at the Pearson website. The material available includes:

•	 Model	answers	to	selected	end	of	chapter	exercises.

•	 Quiz	questions	and	answers	for	each	chapter.

You can access this material at:
www.pearsonglobaleditions.com/Sommerville

Book website

This book has been designed as a hybrid print/web text in which core information in the
printed edition is linked to supplementary material on the web. Several chapters include
specially written ‘web sections’ that add to the information in that chapter. There are also
six ‘web chapters’ on topics that I have not covered in the print version of the book.

You can download a wide range of supporting material from the book’s website
(software-engineering-book.com) including:

•	 A	set	of	videos	where	I	cover	a	range	of	software	engineering	topics.	I	also	rec-
ommend other YouTube videos that can support learning.

•	 An	instructor’s	guide	that	gives	advice	on	how	to	use	the	book	in	teaching	differ-
ent courses.

•	 Further	information	on	the	book’s	case	studies	(insulin	pump,	mental	health	care	
system, wilderness weather system, digital learning system), as well other case
studies, such as the failure of the Ariane 5 launcher.

6    Preface

http://www.pearsonglobaleditions.com/Sommerville

•	 Six	web	chapters	 covering	process	 improvement,	 formal	methods,	 interaction	
design, application architectures, documentation and aspect-oriented development.

•	 Web	sections	that	add	to	the	content	presented	in	each	chapter.	These	web	sec-
tions are linked from breakout boxes in each chapter.

•	 PowerPoint	 presentations	 for	 all	 of	 the	 chapters	 in	 the	 book	 and	 additional	
 PowerPoint presentations covering a range of systems engineering topics are
available at pearsonglobaleditions.com/Sommerville.

In response to requests from users of the book, I have published a complete
requirements specification for one of the system case studies on the book’s web site.
It is difficult for students to get access to such documents and so understand their
structure and complexity. To avoid confidentiality issues, I have re-engineered the
requirements document from a real system so there are no restrictions on its use.

Contact details

Website: software-engineering-book.com
Email: name: software.engineering.book; domain: gmail.com
Blog: iansommerville.com/systems-software-and-technology
YouTube: youtube.com/user/SoftwareEngBook
Facebook: facebook.com/sommerville.software.engineering
Twitter: @SoftwareEngBook or @iansommerville (for more general tweets)

Follow me on Twitter or Facebook to get updates on new material and comments on
software and systems engineering.

Acknowledgements

A large number of people have contributed over the years to the evolution of this
book and I’d like to thank everyone (reviewers, students and book users) who have
commented on previous editions and made constructive suggestions for change. I’d
particularly like to thank my family, Anne, Ali, and Jane, for their love, help and
support while I was working on this book (and all of the previous editions).

Ian Sommerville,
September 2014

  Preface    7

Contents at a glance

Preface 3

 Part 1 Introduction to Software Engineering 15
 Chapter 1 Introduction 17
 Chapter 2 Software processes 43
 Chapter 3 Agile software development 72
 Chapter 4 Requirements engineering 101
 Chapter 5 System modeling 138
 Chapter 6 Architectural design 167
 Chapter 7 Design and implementation 196
 Chapter 8 Software testing 226
 Chapter 9 Software evolution 255

 Part 2 System Dependability and Security 283
 Chapter 10 Dependable systems 285
 Chapter 11 Reliability engineering 306
 Chapter 12 Safety engineering 339
 Chapter 13 Security engineering 373
 Chapter 14 Resilience engineering 408

 Part 3 Advanced Software Engineering 435
 Chapter 15 Software reuse 437
 Chapter 16 Component-based software engineering 464
 Chapter 17 Distributed software engineering 490
 Chapter 18 Service-oriented software engineering 520
 Chapter 19 Systems engineering 551
 Chapter 20 Systems of systems 580
 Chapter 21 Real-time software engineering 610

 Part 4 Software management 639
 Chapter 22 Project management 641
 Chapter 23 Project planning 667
 Chapter 24 Quality management 700
 Chapter 25 Configuration management 730

Glossary 757

Subject index 777

Author index 803

 Pearson wishes to thank and acknowledge the following people for their work on the Global Edition:

Contributor

Sherif G. Aly, The American University in Cairo

muthuraj m., Android developer

Reviewers

mohit P. Tahiliani, National Institute of Technology Karnataka, Surathkal

Chitra Dhawale, P. R. Patil Group of Educational Institutes, Amravati

Sanjeevni Shantaiya, Disha Institute of management & Technology

contentS

Preface 3

 Part 1 Introduction to Software Engineering 15

 Chapter 1 Introduction 17

1.1 Professional software development 19

1.2 Software engineering ethics 28

1.3 Case studies 31

 Chapter 2 Software processes 43

2.1 Software process models 45

2.2 Process activities 54

2.3 Coping with change 61

2.4 Process improvement 65

 Chapter 3 Agile software development 72

3.1 Agile methods 75

3.2 Agile development techniques 77

3.3 Agile project management 84

3.4 Scaling agile methods 88

10    Contents

 Chapter 4 Requirements engineering 101

4.1 Functional and non-functional requirements 105

4.2 Requirements engineering processes 111

4.3 Requirements elicitation 112

4.4 Requirements specification 120

4.5 Requirements validation 129

4.6 Requirements change 130

 Chapter 5 System modeling 138

5.1 Context models 141

5.2 Interaction models 144

5.3 Structural models 149

5.4 Behavioral models 154

5.5 model-driven architecture 159

 Chapter 6 Architectural design 167

6.1 Architectural design decisions 171

6.2 Architectural views 173

6.3 Architectural patterns 175

6.4 Application architectures 184

 Chapter 7 Design and implementation 196

7.1 Object-oriented design using the UmL 198

7.2 Design patterns 209

7.3 Implementation issues 212

7.4 Open-source development 219

 Chapter 8 Software testing 226

8.1 Development testing 231

8.2 Test-driven development 242

  Contents    11

8.3 Release testing 245

8.4 User testing 249

 Chapter 9 Software evolution 255

9.1 Evolution processes 258

9.2 Legacy systems 261

9.3 Software maintenance 270

 Part 2 System Dependability and Security 283

 Chapter 10 Dependable systems 285

10.1 Dependability properties 288

10.2 Sociotechnical systems 291

10.3 Redundancy and diversity 295

10.4 Dependable processes 297

10.5 Formal methods and dependability 299

 Chapter 11 Reliability engineering 306

11.1 Availability and reliability 309

11.2 Reliability requirements 312

11.3 Fault-tolerant architectures 318

11.4 Programming for reliability 325

11.5 Reliability measurement 331

 Chapter 12 Safety engineering 339

12.1 Safety-critical systems 341

12.2 Safety requirements 344

12.3 Safety engineering processes 352

12.4 Safety cases 361

 Chapter 13 Security engineering 373

13.1 Security and dependability 376

13.2 Security and organizations 380

13.3 Security requirements 382

13.4 Secure systems design 388

13.5 Security testing and assurance 402

 Chapter 14 Resilience engineering 408

14.1 Cybersecurity 412

14.2 Sociotechnical resilience 416

14.3 Resilient systems design 424

 Part 3 Advanced Software Engineering 435

 Chapter 15 Software reuse 437

15.1 The reuse landscape 440

15.2 Application frameworks 443

15.3 Software product lines 446

15.4 Application system reuse 453

 Chapter 16 Component-based software engineering 464

16.1 Components and component models 467

16.2 CBSE processes 473

16.3 Component composition 480

 Chapter 17 Distributed software engineering 490

17.1 Distributed systems 492

17.2 Client–server computing 499

12    Contents

17.3 Architectural patterns for distributed systems 501

17.4 Software as a service 512

 Chapter 18 Service-oriented software engineering 520

18.1 Service-oriented architecture 524

18.2 RESTful services 529

18.3 Service engineering 533

18.4 Service composition 541

 Chapter 19 Systems engineering 551

19.1 Sociotechnical systems 556

19.2 Conceptual design 563

19.3 System procurement 566

19.4 System development 570

19.5 System operation and evolution 574

 Chapter 20 Systems of systems 580

20.1 System complexity 584

20.2 Systems of systems classification 587

20.3 Reductionism and complex systems 590

20.4 Systems of systems engineering 593

20.5 Systems of systems architecture 599

 Chapter 21 Real-time software engineering 610

21.1 Embedded system design 613

21.2 Architectural patterns for real-time software 620

21.3 Timing analysis 626

21.4 Real-time operating systems 631

  Contents    13

 Part 4 Software Management 639

 Chapter 22 Project management 641

22.1 Risk management 644

22.2 managing people 652

22.3 Teamwork 656

 Chapter 23 Project planning 667

23.1 Software pricing 670

23.2 Plan-driven development 672

23.3 Project scheduling 675

23.4 Agile planning 680

23.5 Estimation techniques 682

23.6 COCOmO cost modeling 686

 Chapter 24 Quality management 700

24.1 Software quality 703

24.2 Software standards 706

24.3 Reviews and inspections 710

24.4 Quality management and agile development 714

24.5 Software measurement 716

 Chapter 25 Configuration management 730

25.1 Version management 735

25.2 System building 740

25.3 Change management 745

25.4 Release management 750

Glossary 757
Subject index 777
Author index 803

14    Contents

PART

My aim in this part of the book is to provide a general introduction to soft-
ware engineering. The chapters in this part have been designed to support
a one-semester first course in software engineering. I introduce impor-
tant concepts such as software processes and agile methods, and describe
essential software development activities, from requirements specification
through to system evolution.

Chapter 1 is a general introduction that introduces professional software
engineering and defines some software engineering concepts. I have also
included a brief discussion of ethical issues in software engineering. It is
important for software engineers to think about the wider implications of
their work. This chapter also introduces four case studies that I use in the
book. These are an information system for managing records of patients
undergoing treatment for mental health problems (Mentcare), a control
system for a portable insulin pump, an embedded system for a wilder-
ness weather station and a digital learning environment (iLearn).

Chapters 2 and 3 cover software engineering processes and agile devel-
opment. In Chapter 2, I introduce software process models, such as the
waterfall model, and I discuss the basic activities that are part of these
processes. Chapter 3 supplements this with a discussion of agile devel-
opment methods for software engineering. This chapter had been

 1 Introduction
to Software
Engineering

extensively changed from previous editions with a focus on agile devel-
opment using Scrum and a discussion of agile practices such as stories
for requirements definition and test-driven development.

The remaining chapters in this part are extended descriptions of the
software process activities that are introduced in Chapter 2. Chapter 4
covers the critically important topic of requirements engineering, where
the requirements for what a system should do are defined. Chapter 5
explains system modeling using the UML, where I focus on the use of
use case diagrams, class diagrams, sequence diagrams and state dia-
grams for modeling a software system. In Chapter 6, I discuss the impor-
tance of software architecture and the use of architectural patterns in
software design.

Chapter 7 introduces object oriented design and the use of design pat-
terns. I also introduce important implementation issues here—reuse,
configuration management and host-target development and discuss
open source development. Chapter 8 focuses on software testing from
unit testing during system development to the testing of software
releases. I also discuss the use of test-driven development—an
approach pioneered in agile methods but which has wide applicabil-
ity. Finally, Chapter 9 presents an overview of software evolution
issues. I cover evolution processes, software maintenance and legacy
system management.

Introduction
1

Objectives
The objectives of this chapter are to introduce software engineering and
to provide a framework for understanding the rest of the book. When you
have read this chapter, you will:

■ understand what software engineering is and why it is important;

■ understand that the development of different types of software
system may require different software engineering techniques;

■ understand ethical and professional issues that are important
for software engineers;

■ have been introduced to four systems, of different types, which are
used as examples throughout the book.

Contents
1.1 Professional software development

1.2 Software engineering ethics

1.3 Case studies

18    Chapter 1  ■  Introduction

Software engineering is essential for the functioning of government, society, and national
and international businesses and institutions. We can’t run the modern world without
software. National infrastructures and utilities are controlled by computer-based systems,
and most electrical products include a computer and controlling software. Industrial
manufacturing and distribution is completely computerized, as is the financial system.
Entertainment, including the music industry, computer games, and film and television, is
software-intensive. More than 75% of the world’s population have a software-controlled
mobile phone, and, by 2016, almost all of these will be Internet-enabled.

Software systems are abstract and intangible. They are not constrained by the prop-
erties of materials, nor are they governed by physical laws or by manufacturing pro-
cesses. This simplifies software engineering, as there are no natural limits to the potential
of software. However, because of the lack of physical constraints, software systems can
quickly become extremely complex, difficult to understand, and expensive to change.

There are many different types of software system, ranging from simple embed-
ded systems to complex, worldwide information systems. There are no universal
notations, methods, or techniques for software engineering because different types
of software require different approaches. Developing an organizational information
system is completely different from developing a controller for a scientific instru-
ment. Neither of these systems has much in common with a graphics-intensive com-
puter game. All of these applications need software engineering; they do not all need
the same software engineering methods and techniques.

There are still many reports of software projects going wrong and of “software
failures.” Software engineering is criticized as inadequate for modern software
development. However, in my opinion, many of these so-called software failures
are a consequence of two factors:

1. Increasing system complexity As new software engineering techniques help us
to build larger, more complex systems, the demands change. Systems have to be
built and delivered more quickly; larger, even more complex systems are
required; and systems have to have new capabilities that were previously
thought to be impossible. New software engineering techniques have to be
developed to meet new the challenges of delivering more complex software.

2. Failure to use software engineering methods It is fairly easy to write computer
programs without using software engineering methods and techniques. Many
companies have drifted into software development as their products and ser-
vices have evolved. They do not use software engineering methods in their every-
day work. Consequently, their software is often more expensive and less reliable
than it should be. We need better software engineering education and training to
address this problem.

Software engineers can be rightly proud of their achievements. Of course, we still
have problems developing complex software, but without software engineering we
would not have explored space and we would not have the Internet or modern tele-
communications. All forms of travel would be more dangerous and expensive.
Challenges for humanity in the 21st century are climate change, fewer natural

  1.1  ■  Professional software development    19

resources, changing demographics, and an expanding world population. We will rely
on software engineering to develop the systems that we need to cope with these issues.

	 1.1	 Professional	software	development

Lots of people write programs. People in business write spreadsheet programs to
simplify their jobs; scientists and engineers write programs to process their experi-
mental data; hobbyists write programs for their own interest and enjoyment.
However, most software development is a professional activity in which software is
developed for business purposes, for inclusion in other devices, or as software prod-
ucts such as information systems and computer-aided design systems. The key dis-
tinctions are that professional software is intended for use by someone apart from its
developer and that teams rather than individuals usually develop the software. It is
maintained and changed throughout its life.

Software engineering is intended to support professional software development
rather than individual programming. It includes techniques that support program
specification, design, and evolution, none of which are normally relevant for per-
sonal software development. To help you to get a broad view of software engineer-
ing, I have summarized frequently asked questions about the subject in Figure 1.1.

Many people think that software is simply another word for computer programs.
However, when we are talking about software engineering, software is not just the
programs themselves but also all associated documentation, libraries, support web-
sites, and configuration data that are needed to make these programs useful. A pro-
fessionally developed software system is often more than a single program. A system
may consist of several separate programs and configuration files that are used to set
up these programs. It may include system documentation, which describes the struc-
ture of the system, user documentation, which explains how to use the system, and
websites for users to download recent product information.

This is one of the important differences between professional and amateur soft-
ware development. If you are writing a program for yourself, no one else will use it

History of software engineering

The notion of software engineering was first proposed in 1968 at a conference held to discuss what was then
called the software crisis (Naur and Randell 1969). It became clear that individual approaches to program devel-
opment did not scale up to large and complex software systems. These were unreliable, cost more than
expected, and were delivered late.

Throughout the 1970s and 1980s, a variety of new software engineering techniques and methods were
developed, such as structured programming, information hiding, and object-oriented development. Tools and
standard notations were developed which are the basis of today’s software engineering.

http://software-engineering-book.com/web/history/

http://software-engineering-book.com/web/history

20    Chapter 1  ■  Introduction

Figure 1.1 Frequently
asked questions about
software engineering

Question Answer

What is software? Computer programs and associated documentation. Software
products may be developed for a particular customer or may be
developed for a general market.

What are the attributes of good
software?

Good software should deliver the required functionality and
performance to the user and should be maintainable, dependable
and usable.

What is software engineering? Software engineering is an engineering discipline that is concerned
with all aspects of software production from initial conception to
operation and maintenance.

What are the fundamental
software engineering activities?

Software specification, software development, software validation
and software evolution.

What is the difference between
software engineering and
computer science?

Computer science focuses on theory and fundamentals; software
engineering is concerned with the practicalities of developing and
delivering useful software.

What is the difference between
software engineering and system
engineering?

System engineering is concerned with all aspects of computer-
based systems development including hardware, software and
process engineering. Software engineering is part of this more
general process.

What are the key challenges
facing software engineering?

Coping with increasing diversity, demands for reduced delivery
times and developing trustworthy software.

What are the costs of software
engineering?

Roughly 60% of software costs are development costs, 40% are
testing costs. For custom software, evolution costs often exceed
development costs.

What are the best software
engineering techniques and
methods?

While all software projects have to be professionally managed and
developed, different techniques are appropriate for different types
of system. For example, games should always be developed using
a series of prototypes whereas safety critical control systems
require a complete and analyzable specification to be developed.
There are no methods and techniques that are good for everything.

What differences has the Internet
made to software engineering?

Not only has the Internet led to the development of massive, highly
distributed, service-based systems, it has also supported the
creation of an “app” industry for mobile devices which has
changed the economics of software.

and you don’t have to worry about writing program guides, documenting the pro-
gram design, and so on. However, if you are writing software that other people will
use and other engineers will change, then you usually have to provide additional
information as well as the code of the program.

Software engineers are concerned with developing software products, that is,
software that can be sold to a customer. There are two kinds of software product:

1. Generic products These are stand-alone systems that are produced by a
development organization and sold on the open market to any customer who is
able to buy them. Examples of this type of product include apps for mobile
devices, software for PCs such as databases, word processors, drawing packages,
and project management tools. This kind of software also includes “vertical”

  1.1  ■  Professional software development    21

applications designed for a specific market such as library information systems,
accounting systems, or systems for maintaining dental records.

2. Customized (or bespoke) software These are systems that are commissioned by
and developed for a particular customer. A software contractor designs and
implements the software especially for that customer. Examples of this type of
software include control systems for electronic devices, systems written to
support a particular business process, and air traffic control systems.

The critical distinction between these types of software is that, in generic prod-
ucts, the organization that develops the software controls the software specification.
This means that if they run into development problems, they can rethink what is to
be developed. For custom products, the specification is developed and controlled by
the organization that is buying the software. The software developers must work to
that specification.

However, the distinction between these system product types is becoming increas-
ingly blurred. More and more systems are now being built with a generic product as
a base, which is then adapted to suit the requirements of a customer. Enterprise
Resource Planning (ERP) systems, such as systems from SAP and Oracle, are the
best examples of this approach. Here, a large and complex system is adapted for a
company by incorporating information about business rules and processes, reports
required, and so on.

When we talk about the quality of professional software, we have to consider that
the software is used and changed by people apart from its developers. Quality is
therefore not just concerned with what the software does. Rather, it has to include the
software’s behavior while it is executing and the structure and organization of the sys-
tem programs and associated documentation. This is reflected in the software’s qual-
ity or non-functional attributes. Examples of these attributes are the software’s
response time to a user query and the understandability of the program code.

The specific set of attributes that you might expect from a software system obvi-
ously depends on its application. Therefore, an aircraft control system must be safe, an
interactive game must be responsive, a telephone switching system must be reliable,
and so on. These can be generalized into the set of attributes shown in Figure 1.2,
which I think are the essential characteristics of a professional software system.

	 1.1.1		 Software	engineering

Software engineering is an engineering discipline that is concerned with all aspects
of software production from the early stages of system specification through to
maintaining the system after it has gone into use. In this definition, there are two
key phrases:

1. Engineering discipline Engineers make things work. They apply theories, meth-
ods, and tools where these are appropriate. However, they use them selectively

22    Chapter 1  ■  Introduction

Figure 1.2 Essential
attributes of good
software

Product characteristic Description

Acceptability Software must be acceptable to the type of users for which it is
designed. This means that it must be understandable, usable, and
compatible with other systems that they use.

Dependability and security Software dependability includes a range of characteristics including
reliability, security, and safety. Dependable software should not
cause physical or economic damage in the event of system failure.
Software has to be secure so that malicious users cannot access or
damage the system.

Efficiency Software should not make wasteful use of system resources such
as memory and processor cycles. Efficiency therefore includes
responsiveness, processing time, resource utilization, etc.

Maintainability Software should be written in such a way that it can evolve to
meet the changing needs of customers. This is a critical attribute
because software change is an inevitable requirement of a
changing business environment.

and always try to discover solutions to problems even when there are no appli-
cable theories and methods. Engineers also recognize that they must work
within organizational and financial constraints, and they must look for solutions
within these constraints.

2. All aspects of software production Software engineering is not just concerned
with the technical processes of software development. It also includes activities
such as software project management and the development of tools, methods,
and theories to support software development.

Engineering is about getting results of the required quality within schedule and
budget. This often involves making compromises—engineers cannot be perfection-
ists. People writing programs for themselves, however, can spend as much time as
they wish on the program development.

In general, software engineers adopt a systematic and organized approach to their
work, as this is often the most effective way to produce high-quality software.
However, engineering is all about selecting the most appropriate method for a set of
circumstances, so a more creative, less formal approach to development may be the
right one for some kinds of software. A more flexible software process that accom-
modates rapid change is particularly appropriate for the development of interactive
web-based systems and mobile apps, which require a blend of software and graphi-
cal design skills.

Software engineering is important for two reasons:

1. More and more, individuals and society rely on advanced software systems. We need
to be able to produce reliable and trustworthy systems economically and quickly.

2. It is usually cheaper, in the long run, to use software engineering methods and
techniques for professional software systems rather than just write programs as

  1.1  ■  Professional software development    23

a personal programming project. Failure to use software engineering method
leads to higher costs for testing, quality assurance, and long-term maintenance.

The systematic approach that is used in software engineering is sometimes called
a software process. A software process is a sequence of activities that leads to the
production of a software product. Four fundamental activities are common to all
software processes.

1. Software specification, where customers and engineers define the software that
is to be produced and the constraints on its operation.

2. Software development, where the software is designed and programmed.

3. Software validation, where the software is checked to ensure that it is what the
customer requires.

4. Software evolution, where the software is modified to reflect changing customer
and market requirements.

Different types of systems need different development processes, as I explain in
Chapter 2. For example, real-time software in an aircraft has to be completely speci-
fied before development begins. In e-commerce systems, the specification and the
program are usually developed together. Consequently, these generic activities may
be organized in different ways and described at different levels of detail, depending
on the type of software being developed.

Software engineering is related to both computer science and systems engineering.

1. Computer science is concerned with the theories and methods that underlie
computers and software systems, whereas software engineering is concerned
with the practical problems of producing software. Some knowledge of com-
puter science is essential for software engineers in the same way that some
knowledge of physics is essential for electrical engineers. Computer science
theory, however, is often most applicable to relatively small programs. Elegant
theories of computer science are rarely relevant to large, complex problems that
require a software solution.

2. System engineering is concerned with all aspects of the development and evolu-
tion of complex systems where software plays a major role. System engineering
is therefore concerned with hardware development, policy and process design,
and system deployment, as well as software engineering. System engineers are
involved in specifying the system, defining its overall architecture, and then
integrating the different parts to create the finished system.

As I discuss in the next section, there are many different types of software. There are
no universal software engineering methods or techniques that may be used. However,
there are four related issues that affect many different types of software:

24    Chapter 1  ■  Introduction

1. Heterogeneity Increasingly, systems are required to operate as distributed sys-
tems across networks that include different types of computer and mobile
devices. As well as running on general-purpose computers, software may also
have to execute on mobile phones and tablets. You often have to integrate new
software with older legacy systems written in different programming languages.
The challenge here is to develop techniques for building dependable software
that is flexible enough to cope with this heterogeneity.

2. Business and social change Businesses and society are changing incredibly
quickly as emerging economies develop and new technologies become availa-
ble. They need to be able to change their existing software and to rapidly
develop new software. Many traditional software engineering techniques are
time consuming, and delivery of new systems often takes longer than planned.
They need to evolve so that the time required for software to deliver value to its
customers is reduced.

3. Security and trust As software is intertwined with all aspects of our lives, it is
essential that we can trust that software. This is especially true for remote soft-
ware systems accessed through a web page or web service interface. We have to
make sure that malicious users cannot successfully attack our software and that
information security is maintained.

4. Scale Software has to be developed across a very wide range of scales, from
very small embedded systems in portable or wearable devices through to
Internet-scale, cloud-based systems that serve a global community.

To address these challenges, we will need new tools and techniques as well as
innovative ways of combining and using existing software engineering methods.

	 1.1.2		 Software	engineering	diversity

Software engineering is a systematic approach to the production of software
that takes into account practical cost, schedule, and dependability issues, as
well as the needs of software customers and producers. The specific methods,
tools, and techniques used depend on the organization developing the software,
the type of software, and the people involved in the development process. There
are no universal software engineering methods that are suitable for all systems
and all companies. Rather, a diverse set of software engineering methods and
tools has evolved over the past 50 years. However, the SEMAT initiative
(Jacobson et al. 2013) proposes that there can be a fundamental meta-process
that can be instantiated to create different kinds of process. This is at an early
stage of development and may be a basis for improving our current software
engineering methods.

Perhaps the most significant factor in determining which software engineering
methods and techniques are most important is the type of application being devel-
oped. There are many different types of application, including:

  1.1  ■  Professional software development    25

1. Stand-alone applications These are application systems that run on a personal
computer or apps that run on a mobile device. They include all necessary func-
tionality and may not need to be connected to a network. Examples of such
applications are office applications on a PC, CAD programs, photo manipula-
tion software, travel apps, productivity apps, and so on.

2. Interactive transaction-based applications These are applications that execute
on a remote computer and that are accessed by users from their own computers,
phones, or tablets. Obviously, these include web applications such as e-commerce
applications where you interact with a remote system to buy goods and services.
This class of application also includes business systems, where a business
provides access to its systems through a web browser or special-purpose client
program and cloud-based services, such as mail and photo sharing. Interactive
applications often incorporate a large data store that is accessed and updated in
each transaction.

3. Embedded control systems These are software control systems that control and
manage hardware devices. Numerically, there are probably more embedded sys-
tems than any other type of system. Examples of embedded systems include the
software in a mobile (cell) phone, software that controls antilock braking in a
car, and software in a microwave oven to control the cooking process.

4. Batch processing systems These are business systems that are designed to pro-
cess data in large batches. They process large numbers of individual inputs to
create corresponding outputs. Examples of batch systems are periodic billing
systems, such as phone billing systems, and salary payment systems.

5. Entertainment systems These are systems for personal use that are intended to
entertain the user. Most of these systems are games of one kind or another,
which may run on special-purpose console hardware. The quality of the user
interaction offered is the most important distinguishing characteristic of enter-
tainment systems.

6. Systems for modeling and simulation These are systems that are developed by
scientists and engineers to model physical processes or situations, which include
many separate, interacting objects. These are often computationally intensive
and require high-performance parallel systems for execution.

7. Data collection and analysis systems Data collection systems are systems that
collect data from their environment and send that data to other systems for pro-
cessing. The software may have to interact with sensors and often is installed in
a hostile environment such as inside an engine or in a remote location. “Big
data” analysis may involve cloud-based systems carrying out statistical analysis
and looking for relationships in the collected data.

8. Systems of systems These are systems, used in enterprises and other large organ-
izations, that are composed of a number of other software systems. Some of
these may be generic software products, such as an ERP system. Other systems
in the assembly may be specially written for that environment.

26    Chapter 1  ■  Introduction

Of course, the boundaries between these system types are blurred. If you develop
a game for a phone, you have to take into account the same constraints (power, hard-
ware interaction) as the developers of the phone software. Batch processing systems
are often used in conjunction with web-based transaction systems. For example, in a
company, travel expense claims may be submitted through a web application but
processed in a batch application for monthly payment.

Each type of system requires specialized software engineering techniques because
the software has different characteristics. For example, an embedded control system
in an automobile is safety-critical and is burned into ROM (read-only memory)
when installed in the vehicle. It is therefore very expensive to change. Such a system
needs extensive verification and validation so that the chances of having to recall
cars after sale to fix software problems are minimized. User interaction is minimal
(or perhaps nonexistent), so there is no need to use a development process that relies
on user interface prototyping.

For an interactive web-based system or app, iterative development and delivery is
the best approach, with the system being composed of reusable components.
However, such an approach may be impractical for a system of systems, where
detailed specifications of the system interactions have to be specified in advance so
that each system can be separately developed.

Nevertheless, there are software engineering fundamentals that apply to all types
of software systems:

1. They should be developed using a managed and understood development pro-
cess. The organization developing the software should plan the development
process and have clear ideas of what will be produced and when it will be com-
pleted. Of course, the specific process that you should use depends on the type
of software that you are developing.

2. Dependability and performance are important for all types of system. Software
should behave as expected, without failures, and should be available for use
when it is required. It should be safe in its operation and, as far as possible,
should be secure against external attack. The system should perform efficiently
and should not waste resources.

3. Understanding and managing the software specification and requirements (what
the software should do) are important. You have to know what different custom-
ers and users of the system expect from it, and you have to manage their expec-
tations so that a useful system can be delivered within budget and to schedule.

4. You should make effective use of existing resources. This means that, where
appropriate, you should reuse software that has already been developed rather
than write new software.

These fundamental notions of process, dependability, requirements, manage-
ment, and reuse are important themes of this book. Different methods reflect them in
different ways, but they underlie all professional software development.

  1.1  ■  Professional software development    27

These fundamentals are independent of the program language used for software
development. I don’t cover specific programming techniques in this book because
these vary dramatically from one type of system to another. For example, a dynamic
language, such as Ruby, is the right type of language for interactive system develop-
ment but is inappropriate for embedded systems engineering.

	 1.1.3		 Internet	software	engineering

The development of the Internet and the World Wide Web has had a profound
effect on all of our lives. Initially, the web was primarily a universally accessible
information store, and it had little effect on software systems. These systems ran
on local computers and were only accessible from within an organization. Around
2000, the web started to evolve, and more and more functionality was added to
browsers. This meant that web-based systems could be developed where, instead
of a special-purpose user interface, these systems could be accessed using a web
browser. This led to the development of a vast range of new system products that
delivered innovative services, accessed over the web. These are often funded by
adverts that are displayed on the user’s screen and do not involve direct payment
from users.

As well as these system products, the development of web browsers that could
run small programs and do some local processing led to an evolution in business and
organizational software. Instead of writing software and deploying it on users’ PCs,
the software was deployed on a web server. This made it much cheaper to change
and upgrade the software, as there was no need to install the software on every PC.
It also reduced costs, as user interface development is particularly expensive.
Wherever it has been possible to do so, businesses have moved to web-based inter-
action with company software systems.

The notion of software as a service (Chapter 17) was proposed early in the 21st
century This has now become the standard approach to the delivery of web-based
system products such as Google Apps, Microsoft Office 365, and Adobe Creative
Suite. More and more software runs on remote “clouds” instead of local servers and
is accessed over the Internet. A computing cloud is a huge number of linked com-
puter systems that is shared by many users. Users do not buy software but pay
according to how much the software is used or are given free access in return for
watching adverts that are displayed on their screen. If you use services such as web-
based mail, storage, or video, you are using a cloud-based system.

The advent of the web has led to a dramatic change in the way that business soft-
ware is organized. Before the web, business applications were mostly monolithic,
single programs running on single computers or computer clusters. Communications
were local, within an organization. Now, software is highly distributed, sometimes
across the world. Business applications are not programmed from scratch but involve
extensive reuse of components and programs.

This change in software organization has had a major effect on software engi-
neering for web-based systems. For example:

28    Chapter 1  ■  Introduction

1. Software reuse has become the dominant approach for constructing web-based
systems. When building these systems, you think about how you can assemble
them from preexisting software components and systems, often bundled together
in a framework.

2. It is now generally recognized that it is impractical to specify all the require-
ments for such systems in advance. Web-based systems are always developed
and delivered incrementally.

3. Software may be implemented using service-oriented software engineering,
where the software components are stand-alone web services. I discuss this
approach to software engineering in Chapter 18.

4. Interface development technology such as AJAX (Holdener 2008) and HTML5
(Freeman 2011) have emerged that support the creation of rich interfaces within
a web browser.

The fundamental ideas of software engineering, discussed in the previous section,
apply to web-based software, as they do to other types of software. Web-based sys-
tems are getting larger and larger, so software engineering techniques that deal with
scale and complexity are relevant for these systems.

	 1.2		 Software	engineering	ethics

Like other engineering disciplines, software engineering is carried out within a
social and legal framework that limits the freedom of people working in that area. As
a software engineer, you must accept that your job involves wider responsibilities
than simply the application of technical skills. You must also behave in an ethical
and morally responsible way if you are to be respected as a professional engineer.

It goes without saying that you should uphold normal standards of honesty and
integrity. You should not use your skills and abilities to behave in a dishonest way or
in a way that will bring disrepute to the software engineering profession. However,
there are areas where standards of acceptable behavior are not bound by laws but by
the more tenuous notion of professional responsibility. Some of these are:

1. Confidentiality You should normally respect the confidentiality of your employ-
ers or clients regardless of whether or not a formal confidentiality agreement
has been signed.

2. Competence You should not misrepresent your level of competence. You should
not knowingly accept work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the
use of intellectual property such as patents and copyright. You should be careful
to ensure that the intellectual property of employers and clients is protected.

  1.2  ■  Software engineering ethics    29

4. Computer misuse You should not use your technical skills to misuse other peo-
ple’s computers. Computer misuse ranges from relatively trivial (game playing
on an employer’s machine) to extremely serious (dissemination of viruses or
other malware).

Professional societies and institutions have an important role to play in setting
ethical standards. Organizations such as the ACM, the IEEE (Institute of Electrical
and Electronic Engineers), and the British Computer Society publish a code of pro-
fessional conduct or code of ethics. Members of these organizations undertake to
follow that code when they sign up for membership. These codes of conduct are
generally concerned with fundamental ethical behavior.

Professional associations, notably the ACM and the IEEE, have cooperated to
produce a joint code of ethics and professional practice. This code exists in both a
short form, shown in Figure 1.3, and a longer form (Gotterbarn, Miller, and Rogerson
1999) that adds detail and substance to the shorter version. The rationale behind this
code is summarized in the first two paragraphs of the longer form:

Figure 1.3 The ACM/
IEEE Code of Ethics

Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE
The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are
included in the full version give examples and details of how these aspirations change the way we act as soft-
ware engineering professionals. Without the aspirations, the details can become legalistic and tedious; without
the details, the aspirations can become high sounding but empty; together, the aspirations and the details form
a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design, development, test-
ing, and maintenance of software a beneficial and respected profession. In accordance with their commitment
to the health, safety, and welfare of the public, software engineers shall adhere to the following Eight Principles:

1. PUBLIC — Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER — Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with the public interest.
3. PRODUCT — Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.
4. JUDGMENT — Software engineers shall maintain integrity and independence in their

professional judgment.
5. MANAGEMENT — Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and
maintenance.

6. PROFESSION — Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest.

7. COLLEAGUES — Software engineers shall be fair to and supportive of their
colleagues.

8. SELF — Software engineers shall participate in lifelong learning regarding
the practice of their profession and shall promote an ethical approach to the
practice of the profession.

(ACM/IEEE-CS Joint
Task Force on Software
Engineering Ethics and
Professional Practices,
short version. http://
www.acm.org/about/
se-code)

(© 1999 by the ACM,
Inc. and the IEEE, Inc.)

http://www.acm.org/about
http://www.acm.org/about

